Fingerprint Classification in DCT Domain using RBF Neural Networks
نویسندگان
چکیده
Fingerprint classification is a fundamental method for the identification of people. Fingerprint classification is based on the immutability and the individuality of fingerprint. Because of the large collections of fingerprints and recent advances in computer technology, there has been increasing interest in automatic classification of fingerprint. In this paper, an efficient method for fingerprint classification based on the discrete cosine transform (DCT), fuzzy c-means clustering (FCM), the Fisher’s linear discriminant (FLD) and radial basis function (RBF) neural networks is proposed. Experimental results show that the proposed method achieves excellent performance with high correctly recognition rate, very low reject rate, and very less running time.
منابع مشابه
Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملMultiple Classifier Based Iris Recognition System
. This paper devoted to an iris recognition system (IRS) designed using 2D-Discrete Cosine Transform (DCT) features and Self Organizing Map (SOM) and Radial Basis Function (RBF) which are an Artificial Neural Network (ANN) used as classifier. DCT is used for feature extraction to capture essential details. SOM and RBF are applied for classification with different functional paradigms. With resp...
متن کاملFingerprint Feature Extraction Based Discrete Cosine Transformation
Fingerprint identification and verification are one of the most significant and reliable identification methods. It is impossible that two people have the same fingerprint. Automatics identification of humans based on fingerprint requires the input fingerprint to be match with a large number of fingerprints in the database. Generally, the fingerprint recognition systems are unable to solve the ...
متن کاملDetermination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models
In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 25 شماره
صفحات -
تاریخ انتشار 2009